
Smart Contract Code

Review And Security

Analysis Report

Customer: Sky Option

Date: 19/08/2025

We express our gratitude to the Sky Option team for the collaborative engagement that

enabled the execution of this Smart Contract Security Assessment.

SkyCoin (XSO) is an enhanced ERC20 token that integrates burn and pause capabilities, anti-

whale protections, blacklist controls, and owner-configurable limits to provide a secure,

compliant, and adaptable digital asset.

Document

Name

Smart Contract Code Review and Security Analysis Report for Sky

Option

Audited By Panagiotis Konstantinidis, Franco Bregante

Approved By Ivan Bondar

Website https://www.skyxso.com

Changelog 11/08/2025 - Preliminary Report

13/08/2025 - Remediation Report

19/08/2025 - Final Report

Platform BSC

Language Solidity

Tags Fungible Token, ERC-20

Methodology https://hackenio.cc/sc_methodology

Review Scope

Repository https://github.com/skyoption/xso

Initial Commit 97ac21a

Remediation

Commit

c49d600

Deployed Address

https://bscscan.com/token/0xfb40a811FB2568de9709476c099

35a6A0DAFA6aa

2

https://www.skyxso.com/
https://hackenio.cc/sc_methodology
https://github.com/skyoption/xso
https://bscscan.com/token/0xfb40a811FB2568de9709476c09935a6A0DAFA6aa

Audit Summary

The system users should acknowledge all the risks summed up in the risks section of the

report

5 5 0 0

Total Findings Resolved Accepted Mitigated

Findings by Severity

Severity Count

Critical 0

High 0

Medium 1

Low 1

Vulnerability Severity

F-2025-12072 - Improper Wallet Limit Check in _checkLimits for DEX Pair Address

Enables Anti-Whale Restriction Bypass or Blocks Token Sales

Medium

F-2025-12067 - Misleading Documentation in emergencyRemoveLimits Allows

Limits to Be Reinstated

Low

F-2025-12065 - Floating Pragma Info

F-2025-12066 - Unused ReentrancyGuard Increases Code Complexity Without

Providing Protection

Info

F-2025-12068 - Inefficient Code Patterns and Unused Errors Reduce Code

Efficiency

Info

3

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/79102b38-bed6-42a0-b0d8-a24de6fbddbf
https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/f899b8b1-cb85-44ee-86db-b9807a3250de
https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/1e7b9382-5931-4584-87c0-0dc84d4a2a2a
https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/7be12d05-3721-4a8c-9f84-1b56dfef3369
https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/a2bc1758-c48b-4a45-aef7-870240c09fe9

Documentation quality

Functional and technical requirements are clearly outlined.

Security measures like access control, and input validation are well-documented.

Detailed deployment, testing, and verification procedures are provided.

Documentation is clear and whitepaper is provided.

Code quality

NatSpec comments are provided.

The development environment is configured.

Organized with separate sections for functionality.

Test coverage

Code coverage of the project is 92% (branch coverage).

Core functionality and edge cases are covered.

Negative scenarios, such as invalid inputs and unauthorized access, are tested.

4

Table of Contents

System Overview 6

Privileged Roles 6

Potential Risks 7

Findings 8

Vulnerability Details 8

Disclaimers 19

Appendix 1. Definitions 20

Severities 20

Potential Risks 20

Appendix 2. Scope 21

Appendix 3. Additional Valuables 22

System Overview

SkyCoin (XSO) is an ERC20-based token contract that incorporates burn and pause features,

anti-whale protections, blacklist controls, and owner-configurable limits to enhance security

and compliance. It is built on top of OpenZeppelin’s ERC20, ERC20Burnable, ERC20Pausable,

and Ownable modules.

The token implements the following functionalities:

Burn: Allows holders to destroy their tokens, reducing the total supply.

Pause/Unpause: Enables the owner to halt or resume functionalities of the token in

emergency situations.

Blacklist: Blocks blacklisted addresses from transferring tokens.

Anti-Whale Protections: Enforces configurable maximum transaction amounts and

wallet balances.

Exemption List: Allows specified addresses to bypass anti-whale restrictions.

Configurable Limits: The owner can update transaction and wallet limits or disable them

entirely.

It has the following attributes:

Name: Sky Coin

Symbol: XSO

Decimals: 18

Total Supply: 1,000,000,000,000 tokens (1 trillion XSO) minted at deployment to the

specified recipient address.

Privileged roles

The owner of the SkyCoin contract holds full administrative control over all system parameters

and restrictions. Specifically, the owner can:

Pause and unpause all token transfers at any time.

Blacklist or unblacklist any address, preventing them from sending or receiving tokens.

Update maximum transaction amounts and wallet balances, directly altering anti-whale

protections.

Toggle the anti-whale limits on or off, or remove them entirely through the emergency

function.

Grant or revoke exemption status for any address, allowing it to bypass anti-whale

restrictions.

This level of control allows the owner to arbitrarily modify the operational rules governing

token transfers and restrictions. As a result, the owner has the ability to significantly alter the

token’s transfer behavior, disable protections, or restrict participation for any address. At

present, the owner of the contract is a multi-signature wallet, which reduces the risk of a

single point of failure or unilateral misuse of these privileges.

6

Potential Risks

Centralized Minting to a Single Address: The project concentrates minting tokens in a

single address, raising the risk of fund mismanagement or theft, especially if key storage

security is compromised.

Owner's Unrestricted State Modification: The owner can arbitrarily modify

transaction limits, wallet limits, blacklist status, and exemption lists, enabling changes to

anti-whale protections and transfer behavior at any time. Such unrestricted control

introduces centralization risk and may affect contract integrity and user trust if misused or

compromised. These privileges could also be configured in a way that prevents token

holders from transferring or selling their tokens, effectively locking them or making them

unsellable.

Absence of Time-lock Mechanisms for Critical Operations: The contract does not

implement any delay or review mechanism for sensitive administrative actions. This

allows immediate execution of potentially impactful changes, such as disabling limits or

blacklisting addresses, without providing stakeholders an opportunity to review or react,

increasing the risk of misuse.

Administrative Key Control Risks: All sensitive configuration changes, including

blacklisting, limit adjustments, and pausing transfers, are gated by a single administrative

key. If this key is compromised, the attacker could immediately alter transfer conditions,

disable protections, and impact token holder activity.

7

Findings

Vulnerability Details

F-2025-12072 - Improper Wallet Limit Check in _checkLimits for

DEX Pair Address Enables Anti-Whale Restriction Bypass or Blocks

Token Sales - Medium

Description: The contract enforces anti-whale restrictions via the internal

_checkLimits() function, which is triggered on every token transfer

(except mint and burn) through the _update() override:

function _update(address from, address to, uint256 value)

 internal

 override(ERC20, ERC20Pausable)

{

 ...

 if (limitsEnabled && from != address(0) && to != address(0)) {

 _checkLimits(from, to, value);

 }

 super._update(from, to, value);

}

This logic ensures that each transfer does not exceed

maxTransactionAmount and that the recipient’s balance does not surpass

maxWalletBalance . These checks are intended to prevent large

accumulations of tokens by a single address. However, _checkLimits()

does not explicitly exclude the DEX liquidity pair address from the

maxWalletBalance check:

 function _checkLimits(address from, address to, uint256 value) internal v

iew {

 // Skip limits for exempt addresses

 if (exemptFromLimits[from] || exemptFromLimits[to]) {

 return;

 }

 // Check transaction limit

 if (value > maxTransactionAmount) {

 revert ExceedsMaxTransaction();

8

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/79102b38-bed6-42a0-b0d8-a24de6fbddbf

 }

 // Check wallet limit for recipient

 if (balanceOf(to) + value > maxWalletBalance) {

 revert ExceedsMaxWallet();

 }

 }

In a standard deployment, the pair address must be exempted from

limits to avoid blocking sales once its balance exceeds

maxWalletBalance . However, exempting the pair also causes the return

statement to trigger, skipping all checks in _checkLimits() for both buy

and sell transactions. This means a user can bypass not only wallet

balance limits but also per-transaction limits when interacting

through the pair.

If the pair is not exempted, sales will eventually be blocked once its

balance surpasses the wallet limit. The pair address, which facilitates

trading, is expected to hold a large portion of the token supply,

particularly during liquidity provision or after multiple purchases,

making it impractical to subject it to standard wallet balance

restrictions.

Depending on configuration, this design either blocks sales through

the pair once its balance grows beyond maxWalletBalance or fully

bypasses all anti-whale checks for trades through the pair, including

buys. This undermines the intended enforcement of trading

restrictions and can negatively affect trading behaviour and liquidity

management.

Assets:

xso-contract.sol [https://github.com/skyoption/xso]

Status: Fixed

Classification

Impact Rate: 4/5

Likelihood Rate: 5/5

Exploitability: Dependent

Complexity: Simple

Severity: Medium

Recommendations

9

Remediation: Update the _checkLimits() logic to exclude the pair address from wallet

balance enforcement. This ensures that trading via the DEX remains

functional while still enforcing wallet limits for user accounts.

Example Fix:

address public pairAddress;

bool private pairSet;

function setPairAddress(address _pair) external onlyOwner {

 require(!pairSet, "Pair already set");

 require(_pair != address(0), "Zero address");

 pairAddress = _pair;

 pairSet = true;

}

function _checkLimits(address from, address to, uint256 value) internal view

{

 if (exemptFromLimits[from] || exemptFromLimits[to]) return;

 if (value > maxTransactionAmount) revert ExceedsMaxTransaction();

 // Skip wallet limit check for the pair address

 if (to != pairAddress && balanceOf(to) + value > maxWalletBalance) {

 revert ExceedsMaxWallet();

 }

}

This modification preserves anti-whale protections while ensuring

the trading mechanism remains unrestricted and functional.

Resolution: Fixed at commit 8cb793b . A pairAddress mapping was added with a

one-time setter, and _checkLimits() function was updated to skip only

the wallet limit for the pair while keeping transaction limits.

10

F-2025-12067 - Misleading Documentation in

emergencyRemoveLimits Allows Limits to Be Reinstated - Low

Description: The contract includes the emergencyRemoveLimits() function, which is

documented as an irreversible emergency mechanism to

permanently remove transaction and wallet limits, according to the

NatSpec comments provided in the code:

/**

 * @dev Emergency function to remove limits (use with caution)

 * @notice This permanently disables all limits and cannot be undone

 */

function emergencyRemoveLimits() external onlyOwner {

 limitsEnabled = false;

 maxTransactionAmount = totalSupply();

 maxWalletBalance = totalSupply();

 emit LimitsToggled(false);

 emit LimitsUpdated(totalSupply(), totalSupply());

}

However, despite the claim that “This permanently disables all limits

and cannot be undone” the contract still allows the owner to call the

updateLimits() and toggleLimits() functions even after

emergencyRemoveLimits() has been executed.

function updateLimits(uint256 _maxTransaction, uint256 _maxWallet) external o

nlyOwner { ... }

function toggleLimits(bool enabled) external onlyOwner { ... }

These two functions allow the owner to reactivate the limits or

change them arbitrarily at any point after emergencyRemoveLimits() is

called. As such, the “permanent” effect described in the comment is

misleading, and the actual behavior does not enforce any form of

irreversibility.

This discrepancy could result in confusion for integrators, or users,

who may rely on the documentation and assume the limits can no

longer be reinstated once disabled.

Assets:

xso-contract.sol [https://github.com/skyoption/xso]

Status: Fixed

11

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/f899b8b1-cb85-44ee-86db-b9807a3250de

Classification

Impact Rate: 2/5

Likelihood Rate: 3/5

Exploitability: Dependent

Complexity: Simple

Severity: Low

Recommendations

Remediation: To resolve this inconsistency, either update the comment of the

emergencyRemoveLimits() function to accurately reflect that the action is

reversible, or modify the function's implementation to make the

removal of limits truly permanent, for example by introducing an

immutable flag that prevents any future updates to the limit values

or enforcement.

Resolution: Fixed at commit 8018d26 . The NatSpec comment for

emergencyRemoveLimits() function was updated to state that the action is

reversible, matching the actual contract behavior.

12

F-2025-12065 - Floating Pragma - Info

Description: In Solidity development, the pragma directive specifies the compiler

version to be used, ensuring consistent compilation and reducing the

risk of issues caused by version changes. However, using a floating

pragma (e.g., ^0.8.20) introduces uncertainty, as it allows the

contract to be compiled with any version within the specified range.

This can result in discrepancies between the compiler used in testing

and the one used during deployment, increasing the likelihood of

vulnerabilities or unexpected behavior due to changes in compiler

versions.

The project currently uses floating pragma declarations (^0.8.20) in

its Solidity contracts. This increases the risk of deploying with a

compiler version different from the one tested, potentially

reintroducing known bugs from older versions or causing unexpected

behavior with newer versions. These inconsistencies could result in

security vulnerabilities, system instability, or financial loss. Locking

the pragma version to a specific, tested version is essential to

prevent these risks and ensure consistent contract behavior.

pragma solidity ^0.8.20;

Assets:

xso-contract.sol [https://github.com/skyoption/xso]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 1/5

Exploitability: Dependent

Complexity: Simple

Severity: Info

Recommendations

Remediation: It is recommended to lock the pragma version to the specific version

that was used during development and testing. This ensures that the

contract will always be compiled with a known, stable compiler

13

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/1e7b9382-5931-4584-87c0-0dc84d4a2a2a

version, preventing unexpected changes in behavior due to compiler

updates. For example, instead of using ^0.8.xx , explicitly define the

version with pragma solidity 0.8.20; .

Before selecting a version, review known bugs and vulnerabilities

associated with each Solidity compiler release. This can be done by

referencing the official Solidity compiler release notes: Solidity GitHu

b releases or Solidity Bugs by Version. Choose a compiler version

with a good track record for stability and security.

Resolution: Fixed at commit b71ec98 . The floating pragma was replaced with the

fixed version 0.8.30 to ensure consistent compilation and prevent

version-related issues.

14

https://github.com/ethereum/solidity/releases
https://00xsev.github.io/solidityBugsByVersion/

F-2025-12066 - Unused ReentrancyGuard Increases Code

Complexity Without Providing Protection - Info

Description: The contract inherits from OpenZeppelin’s ReentrancyGuard :

import {ReentrancyGuard} from "@openzeppelin/contracts/utils/ReentrancyGuard.

sol";

...

contract SkyCoin is ERC20, ERC20Burnable, ERC20Pausable, Ownable, ReentrancyG

uard {

By doing so, the contract has access to the nonReentrant modifier,

which is commonly used to prevent reentrancy attacks in state-

changing functions that involve external calls. However, throughout

the implementation, the nonReentrant modifier is never applied to any

function. This indicates that the reentrancy guard is not actively

used to protect any execution flow.

As a result, the inclusion of ReentrancyGuard increases the contract's

size and perceived security guarantees without actually enforcing

any reentrancy protection. This may introduce confusion to those

who assume reentrancy protection is present when it is not.

Moreover, its unused presence may suggest a missed opportunity to

secure functions that perform external interactions, especially if such

functions are later added or modified.

Assets:

xso-contract.sol [https://github.com/skyoption/xso]

Status: Fixed

Classification

Impact Rate: 2/5

Likelihood Rate: 1/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

15

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/7be12d05-3721-4a8c-9f84-1b56dfef3369

Remediation: Since the ReentrancyGuard is not used anywhere in the current contract,

remove the import and inheritance of ReentrancyGuard to reduce

unnecessary code complexity and avoid misleading assumptions

about reentrancy protection. If in the future a function performs

external calls and requires reentrancy protection, the modifier can

be reintroduced explicitly where needed.

Resolution: Fixed at commit c49d600 . The unused ReentrancyGuard inheritance was

removed to reduce contract size and avoid misleading security

assumptions.

16

F-2025-12068 - Inefficient Code Patterns and Unused Errors

Reduce Code Efficiency - Info

Description: The contract contains several instances of redundant or unoptimized

code that reduce overall code clarity and maintainability,

specifically:

Unused Custom Error:

The custom error LimitsNotEnabled() is declared but never used

throughout the contract:

error LimitsNotEnabled();

Redundant Constant Assignment:

The constant MAX_SUPPLY is declared and then immediately

reassigned to INITIAL_SUPPLY :

uint256 public constant MAX_SUPPLY = 1_000_000_000_000 * 10**18;

uint256 public constant INITIAL_SUPPLY = MAX_SUPPLY;

This introduces unnecessary indirection and duplication, as

INITIAL_SUPPLY is simply repeating the value of MAX_SUPPLY without

modification.

Unnecessary Calculations:

In the constructor, the maxWalletBalance is set with a redundant

multiplication and division:

maxWalletBalance = INITIAL_SUPPLY * 100 / 100;

This is equivalent to maxWalletBalance = INITIAL_SUPPLY; and the

intermediate operations offer no functional benefit.

Unclear Exemption Assignment:

The exemptFromLimits[address(this)] = true; assignment lacks a clear

functional purpose. The contract is not designed to participate in

token transfers, holds no logic for sending tokens from its own

balance, and there is no apparent scenario where transferring

tokens into the contract would be necessary.

exemptFromLimits[address(this)] = true;

As a result, exempting the contract’s own address from transfer

limits introduces unnecessary code without providing any practical

17

https://portal.hacken.io/App/Projects/Details/2a29074a-5067-4599-a387-016f0ef2e2ce/Finding/a2bc1758-c48b-4a45-aef7-870240c09fe9

benefit.

Although these issues do not pose any security risk, they reduce the

overall clarity of the code and may create distractions during

reviews or future modifications. Maintaining clean and optimized

logic is particularly important for smart contracts, where auditability

and minimalism are crucial.

Assets:

xso-contract.sol [https://github.com/skyoption/xso]

Status: Fixed

Classification

Impact Rate: 1/5

Likelihood Rate: 2/5

Exploitability: Independent

Complexity: Simple

Severity: Info

Recommendations

Remediation: To improve the clarity, efficiency, and maintainability of the

codebase, the following optimizations are recommended:

Remove the unused custom error LimitsNotEnabled() to reduce

dead code and avoid misleading future developers about non-

existent logic paths.

Eliminate the redundant INITIAL_SUPPLY constant and directly use

MAX_SUPPLY where applicable, since both represent the same value.

Simplify expressions like * 100 / 100 by directly assigning the

intended value (e.g., = MAX_SUPPLY) to avoid unnecessary

operations and improve readability.

Remove the exemptFromLimits[address(this)] = true; assignment, as

the contract is not designed to transfer tokens and there is no

practical reason for it to be exempt from transfer limits.

Resolution: Fixed at commit d39a7f7 . Redundant code and unused elements

were removed, and calculations were simplified to improve clarity

and maintainability.

18

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed based on best industry practices at

the time of the writing of this report, with cybersecurity vulnerabilities and issues in smart

contract source code, the details of which are disclosed in this report (Source Code); the

Source Code compilation, deployment, and functionality (performing the intended functions).

The report contains no statements or warranties on the identification of all vulnerabilities and

security of the code. The report covers the code submitted and reviewed, so it may not be

relevant after any modifications. Do not consider this report as a final and sufficient

assessment regarding the utility and safety of the code, bug-free status, or any other contract

statements.

While we have done our best in conducting the analysis and producing this report, it is

important to note that you should not rely on this report only — we recommend proceeding

with several independent audits and a public bug bounty program to ensure the security of

smart contracts.

English is the original language of the report. The Consultant is not responsible for the

correctness of the translated versions.

As part of Hacken’s ongoing quality assurance process, we may conduct re-audits of select

projects. These re-audits are performed independently from the original audit and are

intended solely for internal quality control and improvement. Updated reports resulting from

such re-audits will be shared privately with the respective clients and may be published on the

Hacken website only with their explicit consent.

The sole authoritative source for finalized and most up-to-date versions of all reports remains

the Audits section at https://hacken.io/audits/.

Technical Disclaimer

Smart contracts are deployed and executed on a blockchain platform. The platform, its

programming language, and other software related to the smart contract can have

vulnerabilities that can lead to hacks. Thus, the Consultant cannot guarantee the explicit

security of the audited smart contracts.

19

https://hacken.io/audits/

Appendix 1. Definitions

Severities

When auditing smart contracts, Hacken is using a risk-based approach that considers

Likelihood, Impact, Exploitability and Complexity metrics to evaluate findings and score

severities.

Reference on how risk scoring is done is available through the repository in our Github

organization:

hknio/severity-formula

Severity Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can lead to the

loss of user funds or contract state manipulation.

High

High vulnerabilities are usually harder to exploit, requiring specific conditions, or

have a more limited scope, but can still lead to the loss of user funds or contract

state manipulation.

Medium

Medium vulnerabilities are usually limited to state manipulations and, in most

cases, cannot lead to asset loss. Contradictions and requirements violations. Major

deviations from best practices are also in this category.

Low
Major deviations from best practices or major Gas inefficiency. These issues will

not have a significant impact on code execution.

Potential Risks

The "Potential Risks" section identifies issues that are not direct security vulnerabilities but

could still affect the project’s performance, reliability, or user trust. These risks arise from

design choices, architectural decisions, or operational practices that, while not immediately

exploitable, may lead to problems under certain conditions. Additionally, potential risks can

impact the quality of the audit itself, as they may involve external factors or components

beyond the scope of the audit, leading to incomplete assessments or oversight of key areas.

This section aims to provide a broader perspective on factors that could affect the project's

long-term security, functionality, and the comprehensiveness of the audit findings.

20

https://github.com/hknio/severity-formula/blob/main/README.md

Appendix 2. Scope

The scope of the project includes the following smart contracts from the provided repository:

Scope Details

Repository https://github.com/skyoption/xso

Initial Commit 97ac21ad3c0b5630977f6bee3111e26c68613d94

Remediation Commit c49d6001c358b3855453c2cc80c1b23e2945a510

Deployed Address
https://bscscan.com/token/0xfb40a811FB2568de9709476c09935a6A0D

AFA6aa

Whitepaper Shared internally

Requirements README.md

Technical

Requirements
TECHNICAL_DOCUMENTATION.md

Asset Type

xso-contract.sol [https://github.com/skyoption/xso] Smart Contract

21

https://github.com/skyoption/xso
https://bscscan.com/token/0xfb40a811FB2568de9709476c09935a6A0DAFA6aa

Appendix 3. Additional Valuables

Additional Recommendations

The smart contracts in the scope of this audit could benefit from the introduction of automatic

emergency actions for critical activities, such as unauthorized operations like ownership

changes or proxy upgrades, as well as unexpected fund manipulations, including large

withdrawals or minting events. Adding such mechanisms would enable the protocol to react

automatically to unusual activity, ensuring that the contract remains secure and functions as

intended.

To improve functionality, these emergency actions could be designed to trigger under specific

conditions, such as:

Detecting changes to ownership or critical permissions.

Monitoring large or unexpected transactions and minting events.

Pausing operations when irregularities are identified.

These enhancements would provide an added layer of security, making the contract more

robust and better equipped to handle unexpected situations while maintaining smooth

operations.

22

